coursera week 1 - matrices
and vectors
1. Matrix Elements
$ A_{ij} = $ “$i, j$ entry” in the $i^{th}$ row, $j^{th}$ column
$ A_{32} = 8 $
2. Vector $A_n$ n*1 matrix
$R^4$ 4 dimensional vector
$y_i = i^{th} element$
2.1 math 1-indexed
2.2 machine-learning 0-indexed
3. Matrix Addition
4. Scalar Multiplication
5. Combination of Operands
6. Matrix Vector Multiplication
Matrix Vector Multiplication Fmt :
6.1 House sizes example
House sizes | Price |
---|---|
2104 | ? |
1416 | ? |
1534 | ? |
852 | ? |
7. Practice Example
$ A_{2 \times 3} \times A_{3 \times 2} = A_{2 \times 2} $
8. House Example
9. Matrix $A \times B \neq B \times A$
But, 结合律,可以的
$ A \times B \times C = (A \times B) \times C = A \times (B \times C) $
10. Identity Matrix
Denoted I (or I_{n*n}).
10.1 $2 \times 2$
10.2 $3 \times 3$
$Z \times I = I \times Z = Z$
11. Matrix Inverse
$3 \times 3^{-1} = 1$
Not all numbers have an inverse.
if $A$ is an $m \times m$ matrix, and if it has an inverse
$A \times A^{-1} = A^{-1} \times A = I$
$ A \times A^{-1} = I_{2 \times 2} $
12. Matrix Transpose
Let $A$ be an $m \times n$ matrix, and let $B = A^T$.
Then $B$ is an $n \times m$ matrix, and $B_{ij} = A_{ji}$
Coursera Week 2 - Linear Regression with Multiple Variables
coursera week 2 - linear regression with multiple variables 1 1. Multiple Features $\begin{align...
Coursera Week 1 - Linear Regression Cost Function & Gradient descent
Linear Regression Cost Function & Gradient descent 1. Linear Regression 2. Cost Function Cho...